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Abstract

This research aims to advance the diagnosis and management of Alzheimer's
disease (AD) by leveraging deep learning methodologies, providing a com-
prehensive quantitative evaluation of their efficacy compared to traditional
machine learning models. A thorough literature review was conducted, focus-
ing on the application of deep learning techniques in AD diagnosis. The study
examined various biomarkers and datasets utilized in the field, evaluating
their contributions to the accuracy and reliability of diagnostic models. The
analysis encompassed both natural language processing and computer vision
approaches, highlighting recent trends and innovations. Deep learning mod-
els demonstrated superior accuracy in diagnosing AD compared to conven-
tional machine learning techniques. The quantitative analysis revealed signifi-
cantimprovements in early detection and diagnostic precision, showcasing the
potential of these advanced methodologies. Despite the advancements, sev-
eral challenges, such as data variability and model interpretability, were iden-
tified, indicating areas for further research. Comparative analysis with existing
diagnostic approaches underscored the advancements in accuracy and relia-
bility achieved through deep learning. The novelty of this research lies in its
detailed quantitative assessment of deep learning techniques for AD diagno-
sis, providing a robust foundation for future advancements. Unlike conven-
tional studies, this work offers a comprehensive numerical justification of the
efficacy of deep learning models. The integration of diverse biomarkers and
datasets, combined with the superior diagnostic performance, sets this study
apart, highlighting the potential for significant improvements in AD diagnosis
and management through continued innovation in deep learning methodolo-
gies.

Keywords: Alzheimer’s Disease; Deep Learning (DL); Cognitive Decline; Neural Networks;
Biomarkers; Research Trends
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Introduction

Alzheimer’s Disease is characterized as a enduring neurobio-
logical brain condition that progressively leads to the deteri-
oration of brain cells, resulting in discrepancies in cognitive
function and memory. Ultimately, AD speeds up the pro-
cess of losing the capacity to carry out even the most fun-
damental duties. In the initial stages of AD, brain imag-
ing and computer-assisted diagnostic techniques are used by
medical practitioners to classify the disease. Recent statistics
from the World Alzheimer’s Association indicates that more
than 4.7 million Americans 65 years of age and older are
presently suffering from AD. Forecasts indicate that this fig-
ure may increase dramatically over the next fifty years, per-
haps impacting as many as sixty million people. About 60-
80% of dementia cases worldwide are caused by Alzheimer’s
disease.

A branch of artificial intelligence called deep learning
(DL) has become an effective tool across a range of fields,
including medical imaging and biomarker analysis. By lever-
aging neural networks to automatically learn complex pat-
terns from large datasets, deep learning techniques hold
promise for enhancing AD diagnosis and understanding dis-
ease progression.

Research trends in AD diagnosis and management are
increasingly focused on integrating deep learning method-
ologies with traditional biomarkers and imaging techniques.
By harnessing the power of DL, investigators can uncover
novel biomarkers, refine existing diagnostic criteria, and
develop personalized treatment regimens tailored to individ-
ual patients.

This paper aims to provide a comprehensive review of
AD detection using deep learning methods. By examining the
intersections of cognitive decline, neural networks, machine
learning, biomarkers, medical imaging, and research trends,
we aim to highlight the potential of deep learning in
advancing our understanding and management of AD.

Related Work

Our methodology presents a novel approach to bipedal robot
design, featuring 12 degrees of freedom for versatile, human-
like motion. We enhance bipedal gait generation by inte-
grating Zero Moment Point (ZMP) with the Linear Inverted
Pendulum Model (LIPM). While based on existing con-
cepts, our research pushes the boundaries of this framework
for improved stability and walking patterns. This approach
reflects our commitment to innovative design and control
strategies in the field of bipedal robotics.

Numerous studies have discovered the application of DL
techniques in the detection and classification of AD, aiming
to enhance accuracy and efficiency in disease prediction and
management. An overview of current studies in this emerging
topic is given in this part, with emphasis on important

approaches, discoveries, and developments.

One notable study by Sarraf and Tofighi demonstrated
the effectiveness of convolutional neural networks (CNNs) in
automatically detecting AD from structural MRI scans. Their
deep learning model achieved high accuracy in discriminat-
ing between AD sufferers and unaffected controls, showcas-
ing the potential of CNNs in neuroimaging-based diagno-
sis?.

Building upon this work, Zhou et al. suggested a multi-
modal deep learning framework for AD diagnosis, integrat-
ing sMRI and fMRI data. Their model effectively combined
spatial and temporal features extracted from both modalities,
yielding superior performance compared to single-modality
approaches ®.

In addition to neuroimaging modalities, researchers have
also explored the utility of other biomarkers in AD detection.
For instance, Li et al. investigated the use of cerebrospinal
fluid (CSF) biomarkers in conjunction with deep learning
algorithms for early AD diagnosis. Their study demonstrated
the potential of combining CSF biomarker data with deep
learning models to improve diagnostic accuracy and prognos-
tic prediction®.

Moreover, recent advancements in deep learning have
extended beyond traditional imaging and biomarker modal-
ities. Natural Language Processing techniques have been
increasingly worked to analyze textual data, such as clini-
cal notes and medical records, for AD diagnosis. For exam-
ple, Fung et al. established a deep learning-based model to
extract and analyze linguistic features from clinical narratives,
enabling automated prediction of AD progression and sever-
ity(é).

The goal of this investigation is to determine the best arti-
ficial neural network design for AD multiclass categorization,
using the AD Imaging Initiative (ADNI) dataset, while mini-
mizing the need for extensive image preprocessing and reduc-
ing computational complexity .

The research paper focuses on the detection and clas-
sification of AD using deep learning methods, specifically
DenseNet-169 and ResNet-50 CNN architectures. The goal of
these models is to correctly categorize AD into four groups:
non-dementia, very mild dementia, mild dementia, and mod-
erate dementia ©).

Overall, these studies underscore the growing interest
and possibilities of deep learning approaches in Alzheimer’s
detection. By leveraging advanced neural network archi-
tectures and multimodal data integration, researchers are
poised to unlock new insights into the pathophysiology of
Alzheimer’s and improve clinical decision-making in disease
management.

Preliminaries

Overall, these studies underscore the growing interest and
possibilities of deep learning approaches in Alzheimer’s
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Fig 1. a) Normal brain and b) brain affected by Alzheimer’s disease (AD). (Zeinab Breijyeh, et al., (2020)) ®)

detection. By leveraging advanced neural network archi-
tectures and multimodal data integration, researchers are
poised to unlock new insights into the pathophysiology of
Alzheimer’s and improve clinical decision-making in disease
management.

AD Neuroimaging

The identification and diagnosis of AD depend heavily on
neuroimaging markers, which provide information on the
anatomical and functional changes in the brain related to the
illness.

o Structural Magnetic Resonance Imaging: Structural
MRI allows for the visualization of macroscopic changes
in brain structure, including cortical atrophy, ventricu-
lar enlargement, and hippocampal volume loss, which
are characteristic features of AD pathology®. Hip-
pocampal (HC) volume and cortical thickness, two
quantitative metrics obtained from structural MRI, are
sensitive indicators for AD-related neurodegeneration.

o Functional MRI (fMRI): Applying functional mag-
netic resonance imaging (fMRI), variations in blood
oxygenation levels correlated with neuronal activity
can be measured to evaluate brain function. Func-
tional connection patterns have changed during resting-
state fMRI studies, especially within the default mode
network, which is suggestive of early AD pathol-
ogy®. Task-based fMRI paradigms also provide valu-
able insights into cognitive impairment and neural dys-

function in AD.

o Positron Emission Tomography (PET): The in vivo
identification of AD pathology is made possible by PET
imaging using radiotracers that target tau and beta-
amyloid proteins. In order to visualize and quantify
beta-amyloid deposition, beta-amyloid PET tracers,
including (18F) florbetapir and (18F) florbetaben, bind
to amyloid plaques in the brain®. When tau PET
tracers, like (18F) flortaucipir, attach to neurofibrillary
tangles, they provide further details regarding the tau
pathology associated with AD™.

« Diffusion Tensor Imaging (DTI): DTI measures the
diffusion of water molecules in brain tissue to provide
data concerning white matter integrity and connections.
Patients with AD have been found to have changes in
the white matter microstructure, which are indicative
of axonal degradation and disconnection of brain
networks. These changes include decreased fractional
anisotropy and increased mean diffusivity ).

AD Datasets

Studies on Alzheimer’s disease uses several publicly available
datasets for different objectives, encompassing diagnosis,
prediction, and understanding disease progression. Sample of
dataset MRI Images as shown in Figure 2.
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(b)y AD dataset

Fig 2. Normal Brain and AD Brain MRI Images of Dataset (Zeinab Breijyeh, et al., (2020)) *

a. Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

When it went public in 2003, several non-profit organi-
zations, including the Food and Drug Administration, the
National Institute on Aging, the National Institute of Biomed-
ical Imaging and Bioengineering, and commercial pharma-
ceutical companies, collaborated on its development. This
five-year, USD 60 million public-private partnership sought
to determine if Mild Cognitive Impairment (MCI) and Early
Alzheimer’s Disease could be well pursued by serial measures
of MRI imaging, CSF test, PET scans, clinical examinations,
and factors related to neuropsychology. The ADNI datasets
have been divided into four categories: ADNI-1, ADNI GO,
ADNI-2, and ADNI-3, based on the participant pool. The
URL to access the data is http://adni.loni.usc.edu/.

b. Open Access Series of Imaging Studies (OASIS)
The OASIS dataset from the Washington University Knight
Alzheimer Disease Research Center incorporates clinical,
MRI scans and PET scans data from several patients with
ages ranging from 42 to 90 above. There are 493 people in
varying stages of cognitive impairment and 605 adults who
are cognitively intact. The 15-year dataset includes over 2000
MRI scans with functional and anatomical sequences. In
addition, there are over 1500 after processing images from
the PET Unified Pipeline and PET metabolic and amyloid
imaging raw imaging samples. Longitudinal cognitive and
clinical outcomes have been offered by OASIS, together with
information on dementia state and APOE genotype. This
open-access dataset, which contains both cross-sectional and
longitudinal information, aids in the study of dementia and
old age. The dataset is publicly available and can be accessed
at http://www.aibl.csiro.au/.

c. Australian Imaging Biomarkers and Lifestyle
(AIBL)

It is a longitudinal research project focused on understand-
ing aging and Alzheimer’s disease (AD). Participants are
recruited from all throughout Australia, and information
is gathered on clinical evaluations, cognitive tests, genetics,
lifestyle choices, and brain imaging like MRI and PET. AIBL
aims to monitor biomarkers, and imaging characteristics to
advance research on AD progression, risk factors, and inter-
ventions. Accessible to researchers globally, AIBL contributes
crucial insights into aging-related neurodegenerative diseases
and informs strategies for early detection and treatment. The
dataset is accessible at http://www.aibl.csiro.au/ and is open
to the public.

d. Medical Image Resource for Alzheimer’s Disease
(MIRIAD)

MRI samples from people with AD, Healthy Controls (HC),
and Mild Cognitive Impairment (MCI) are all encompassed
in the collection. Researchers can examine alterations in
brain structure linked to several phases of Alzheimer’s
disease progression thanks to this heterogeneous subject pool.
MIRIAD contains a comprehensive collection of structural
MRI scans, including T1-weighted images, which provide
detailed information about brain anatomy and morphology.
In addition to MRI data, MIRIAD may also include clinical
information such as cognitive assessments, genetic data, and
demographic details for participants. The dataset can be
obtained from http://www.ucl.ac.uk/drc/research/miriad.

Preprocesing

Preprocessing brain MRI data is essential to guaranteeing
the accuracy and consistency of the analysis that follows for
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categorization of AD. Below is a summary of the typical
preprocessing actions:

o Skull Stripping: The procedure of removing non-brain
tissue from MRI scans is known as “skull stripping.” This
step is important to eliminate artifacts and unwanted
signal from the surrounding structures, enabling accu-
rate segmentation and analysis of the hippocampus.
Various algorithms and software packages, such as FSLs
Brain Extraction Tool (BET) or FreeSurfer’s skull strip-
ping module, can be employed for this purpose.

« Motion Correction: Motion artifacts can significantly
affect the quality of MRI data, particularly in longitu-
dinal or multi-modal studies. Motion correction tech-
niques are applied to align the images and minimize the
impact of subject movement. Rigid body transforma-
tions or advanced motion correction algorithms, such
as those available in tools like FSL or SPM, can be used
to address motion-related issues.

« Intensity Normalization: MRI images may exhibit vari-
ations in intensity due to scanner-related factors or
acquisition parameters. Intensity normalization tech-
niques, such as histogram matching or Z-score normal-
ization, are applied to standardize the image intensities
across subjects. This step helps to reduce inter-subject
variability and improves the comparability of the hip-
pocampal features extracted from different individuals.

« Bias Correction: MRI images may suffer from inten-
sity inhomogeneities or bias fields, which can impact the
accuracy of subsequent analysis. Bias correction meth-
ods, such as N3 or non-parametric non-uniform inten-
sity normalization (N3 or N4ITK), are commonly used
to remove these spatially varying intensity distortions.
This step ensures that the segmentation and measure-
ment of hippocampal volumes are not affected by inten-
sity biases.

» Spatial Registration: Spatial registration is performed
to align the hippocampus MRI data to a common
anatomical space or template. This step helps to normal-
ize anatomical variations across individuals, enabling
group-level analysis. Registration algorithms, like rigid,
affine, or non-linear transformations, are applied
to achieve accurate alignment of the hippocampal
regions 1%,

Feature Extraction

o Hippocampus Volume: The volume of the segmented
hippocampus is a widely studied feature in Alzheimer’s
disease research. It is typically calculated by counting
the number of voxels within the hippocampal region of
interest. Patients with AD have been shown to have a
smaller hippocampal volume than healthy controls.

o Shape Features: Various shape-based features can be
extracted from the segmented hippocampus, providing
information about its morphological characteristics.
These features may include surface area, sphericity,
compactness, elongation, and asymmetry measures.
Shape features can detect anatomical changes in the
brain areas associated with the ethology of AD.

o Texture Features: The brain hippocampus’s texture fea-
tures quantify the pixel intensities” spatial distribution.
They provide information about the local variations and
patterns in the MRI data. To compute texture charac-
teristics, one can employ a variety of methods, such
as Local Binary Patterns, Gray-level Co-occurrence
Matrix, and Gray-level Run Length Matrix. These char-
acteristics represent irregularities in hippocampal tex-
tural patterns associated with Alzheimer’s disease.

o Intensity Features: Intensity-based features can be
derived from the MRI intensities within the seg-
mented brain region. These features include mean
intensity, standard deviation, skewness, and kurtosis.
They can capture variations in signal intensity within
the hippocampus associated with tissue alterations in
Alzheimer’s disease.

+ Voxel-based Features: Voxel-based features extract
information from individual voxels within the hip-
pocampus. These features may involve statistical mea-
sures, such as mean, median, or variance, computed
directly from the voxel intensities. Voxel-based features
can provide localized information about the hippocam-
pus, enabling the detection of subtle changes associated
with Alzheimer’s disease ®-711:12),

Deep Learning Models

Using several neuroimaging modalities, such as MRI and PET
scans, various deep learning models have been developed for
the purpose of identifying and categorizing AD.

The steps involved in applying DL models for AD
diagnoses is provided by the general block diagram of
AD detection and classification in Figure 3, but specific
implementations may differ based on the dataset, deep
learning strategies, and clinical needs.

A. Convolutional Neural Network (CNN)

CNNs have showed impressive performance in a range of
image classification applications, including the classification
of AD. They use pooling layers for spatial down-sampling and
convolutional layers to extract local and global characteristics
from the MRI Imaging data, allowing them to automatically
develop hierarchical representations. CNNs have demon-
strated a high degree of accuracy in categorizing Alzheimer’s
disease cases, especially when used in conjunction with trans-
fer learning that makes use of CNN pretrained models on
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Fig 3. A general block diagram showing how deep learning models are used to detect and classify AD

extensive image datasets 1.

B. Recurrent Neural Networks (RNN)

RNNs, and in particular Long Short Term Memory (LSTM)
networks, have been studied for their ability to recognize
sequential patterns and temporal dependencies in MRI data
pertaining to the classification of Alzheimer’s disease. RNNs
are able to model the gradual changes in the disease and
generate predictions based on the full sequence by taking into
account the temporal sequence of hippocampal MRI scans.
However, due to the limited temporal information available
in cross-sectional MRI data, the performance of RNNs may
be less prominent compared to CNNs.

C. 3D Convolutional Neural Networks (3D
CNN)

3D CNNs can directly process volumetric data, such as 3D
hippocampus MRI scans, preserving the spatial information
in all three dimensions. By considering the 3D context,
these models can capture fine-grained structural patterns and
relationships within the hippocampus. 3D CNNs have shown
promise in Alzheimer’s disease classification, particularly
when dealing with voxel-level data. Still, in comparison to
2D CNNes, they can need more computer power and training
data¥,

D. Autoencoders (AE)

Autoencoders are models for unsupervised learning that
utilise a compressed latent representation of the input data
to reconstruct it. They have been used in Alzheimer’s disease
classification to learn low-dimensional representations of
hippocampus MRI data. Anomalies in the reconstructed
pictures of MRI scans from Alzheimer’s patients can be used
for categorization by training an autoencoder on healthy
controls. Autoencoders provide a data-driven approach for
feature extraction and have shown potential in identifying

subtle changes associated with Alzheimer’s disease.

E. Generative Adversarial Network (GAN)

Deep learning models called GANs are made up of a
discriminator network and a generator network. GANs have
been investigated for the purpose of classifying AD by
producing artificial hippocampal MRI images that closely
mimic real scans. The generator can learn to produce realistic
scans by training the discriminator to discern between
genuine and synthetic scans. GANs can be applied to data
augmentation, data rectification for imbalances, and the
creation of informative representations for the classification
of AD®),

It is imperative to keep in mind that multiple factors,
such as the dataset’s quality and accessibility, the models’
architecture and hyperparameters, and the preprocessing
and augmentation methods used, can affect how well deep
learning models perform.

To classify Alzheimer’s illness, this study examined several
DL morels, such as stacked autoencoders, 2D CNN, and
3D CNNs. Results showed that 3D CNNs achieved higher
accuracy (91.5%) compared to 2D CNNs (85.2%) and stacked
autoencoders (78.1%). The study highlighted the importance
of volumetric information captured by 3D CNNs for accurate
classification 1), The results demonstrated that a 3D CNN
with two convolutional layers achieved the highest accuracy
of 88% in categorizing AD patients and normal controls. The
study highlighted the effectiveness of 3D CNNs in capturing
spatial relationships within the hippocampus ).

This study compared various machine learning models,
including deep learning architectures (e.g., stacked autoen-
coders), for AD classification using multi-atlas-based fea-
tures extracted from brain MRI data. The results showed
that stacked autoencoders achieved an accuracy of 90.7% and
outperformed Random Forest (RF), support vector machine
(SVM), and logistic regression, among other machine learn-
ing models. The study emphasized the advantages of deep
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learning in capturing complex patterns in multi-atlas-based
features 17

To facilitate an early detection of AD, examined the effi-
cacy of multi-modal deep neural networks that combine
data from structural MRI scans and PET scans. The results
showed that the multi-modal deep neural network achieved
an accuracy of 91.8%, outperforming single-modality models
(MRI or PET) and traditional machine learning methods. The
study highlighted the benefits of integrating multiple imaging
modalities and leveraging deep learning for improved classi-
fication accuracy ).

Unsupervised learning uses unlabeled train dataset. The
objective of training is to categories or separate the observed
values. The deep model is highly helpful for extracting impor-
tant features from data in a hierarchical fashion, as opposed
to a well-designed feature extractor with shallow architec-
ture that necessitates human design and specialized knowl-
edge . Restricted Boltzmann Machines and Autoencoders
are two further subcategories of unsupervised learning. (Tom-
czak and Gonczarek, Feb 2017). Unsupervised deep neural
networks are used to extract features, which are then taken
from MRI, PET, and other sources and categorized using
classifiers like support vector machine. In 2017, Shi et al.
proposed a stacked denoising sparse auto-encoder that uses
support vector machine for classification. Results were bet-
ter than SVM thanks to a deep belief network (DBN) that
Faturrahman et al. (2017) assembled from a stacked model of
a Restricted Boltzmann Machines and structured AD detec-
tion.

Supervised learning is more widely used as compared
to unsupervised learning. CNNs, RNNs, and DNNs are
common networks used in supervision techniques (Béhle,
Ei-tel, Weygandt & Ritter, 2019). (Nguyen et al., 2020).
Among all the deep models, CNN is the most efficient.
Many sophisticated CNN models, including as VGGNet,
AlexNet, ResNet, DenseNet, Inception, and Puttagunta &
Ravi’s Inception, can carry out efficient AD detection (Yang &
Mohammed, 2020; Guttery, 2020; Alotaibi & Alotaibi, 2020).

Researchers with similar interests can set up a CNN-
based private architecture. Wang et al. (2018) used leaky
ReLU and experience to build an 8-layer CNN with a 97.65%
accuracy rate. Huang et al. (2020) employed DenseNet with
dense and quick connections to accurately classify medical
images using the feature map generated by the PCANet
upgrade. Despite being superior to most conventional feature
extraction methods, for training CNN needs a lot of image
data because to its lengthier training period. A long-standing
issue in the medical industry is the scarcity of image samples.
Image augmentation and TL are typical remedies. Pre-trained
VGG16 was employed by Jain et al. (2019) as a feature
extractor to categorize AD, CN, and MCI. Wang et al. (2021)
proposed the VGG Inspired Network as the backbone to
expand the data collection and integrated the convolution

block attention moduleThe ResNet network was utilized by
Prakash et al. (2021) to detect AD with a 98.37% detection
accuracy. Since neuroimaging offers a spatial link between
images, 3D CNN is also widely used in the diagnosis of AD.

CNN was proposed as a diagnostic method for AD by
Khvostikov et al. (2018) in a 3D based on Inception. In
comparison with the standard AlexNet network, there is a
notable improvement in performance.

Every paper included in Table 1 contributes to the expand-
ing amount of research on deep learning-based methods
for AD classification and detection. These models leverage
various biomarkers and imaging modalities to achieve high
accuracy in distinguishing between different stages of cogni-
tive impairment and healthy individuals. It serves as a refer-
ence point for understanding the context and timeline of the
studies conducted. Speech transcripts, MRI, fMRI, PET, and
demographic data may all be used in this investigation. Dif-
ferent biomarkers provide unique insights into AD pathology
and progression. MRI was the most often used biomarker in
all of the examinations, followed by multi-modal biomark-
ers. Datasets used in the research, which serve as the basis
for training and evaluating the deep learning models. ADNI,
OASIS, Kaggle datasets, and other resources are several sam-
ples. The choice of dataset influences the generalizability
and applicability of the findings. The ADNI dataset was pre-
dominantly utilized across most studies for AD diagnosis.
Common methods include CNN (Convolutional Neural Net-
work), RNN (Recurrent Neural Network), GAN (Genera-
tive Adversarial Network), and DNN (Deep Neural Network).
CNN was used in most studies to diagnose AD, and then
hybrid DL models. Every technique has advantages and uses
for examining various kinds of data. the study’s performance
indicators for the deep learning models that were assessed. In
AD detection and classification tasks, metrics counting Accu-
racy, Sensitivity, Specificity, Area Under the Curve, Recall
and F1-score offer valuable information about the models’
predictability and efficacy.

Challenges and Future Scope

» Data Scarcity and Quality: Neuroimaging data, essen-
tial for AD diagnosis, is often decentralized and housed
within hospital systems, making access for research
challenging. Furthermore, acquiring labelled data for
the diagnosis of AD is expensive and necessitates spe-
cialized knowledge. The diverse nature of electronic
medical records and the lack of labelled data provide
major obstacles for DL algorithms attempting to distin-
guish signal from noise.
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Table 1. A summary of deep learning-based techniques for AD detection and categorization

Ref. Year Biological DL Models Datasets Metrics
Markers
an 2019 MR Images CNN Model ADNI-150 samples, class (CN  Acc (CN Vs. AD):99 % Acc (AD Vs.
-50, AD -50, MoCI -50) MCI): 99% Acc (CN Vs. MCI): 99%
(12) 2019 T1-weighted 3D CNN ADNI-811  classes (AD- Acc (AD/NC):92% Acc
MR images 192, pMCI-165, sMCI-231, (pMCI/sMCI):75% Acc
NC-223 (MCI/NC):74.64%
(15) 2019 MRI CNN+TVP ADNI-352 classes: (AD-77, ADNI  Accuracy (AD/NC):85.55%
NC- 129, MCI- 146) GARD-  GARD Accuracy (AD/NC):90.05%
326 classes (AD- 81, NC- 171,
and MCI- 74)
(16) 2019 MRI  T1/T2- UG-netand GAN  CIND- 32 classes: (AD-7,NC-  UG-net Accuracy 84.9% GAN Accuracy
weighted 21, MCI- 4) 91.6%
an 2019 Transcripts of CNN and RNN Dementia Bank Dataset AUC (NC vs.AD):83.8%
Speeches
(18) 2020 fMRI, PET CNNGs ADNI-54 classes (AD-27, Acc (ADNI (fMRD): 99 % Acc
HCp-27) fMRI Dataset ADNI  (ADNI(PET): 73 %
-2675 classes (AD -900,
HCp-1775) PET Dataset
20 2020 Tlw and T2w Deep Supervised Kulaga-Yoskovitz dataset -25 Kulaga-Yoskovitz -Accuracy (HC/AD)
MR images UNET CNN subjects-HC Winterburn ~ :91.16%+0.0014 Winterburn - Accuracy
dataset-5 subjects (HC/AD): 67.04+0.0045
@n 2020 T2-weighted FuseNet NITRC dataset -25 subjects-  Acc Hippocampus: 0.9614-0.005
TSE image HC
@2) 2020 MRI DBN driven LB OASIS-1 classes:( MCI- 34, Diceu+d (NC/MCI/AD): 0.87 4-0.05
NC-29, and AD-37.
@) 2020 MRI DCNN OASIS-382 classes (ND, VMD,  Acc (ND/VMD/MD/MAD):99.05%
MD, MAD)
@9 2021 fMR Imaging CNNs ADNI - 675 images Acc (LAD) : 98. % Acc (MAD) :95 % Acc
(MoAD) :89% Acc (SAD) :87 %
2% 2021 Tlw images DCNN (U-Net) ~ ADNI- 135 subjects (AD / Dice (HC-AD/MCI): 92.30% Computa-
MCI) tion Time: 323.4 s
®) 2021 MRI DNN GARD- 326 images, subjects LH-DNN Accuracy (AD/NC): 94.82%
(NC-171, ADD- 81, aAD- 35, RH-DNN Accuracy (AD/NC): 94.02%
mAD-39)
(20) 2021 MRI DCNN ADNI -179 images, Classes Acc (AD/CN): 85% Acc (MCI/CN): 76%
(AD: 58, MCL: 48, CN: 73). Acc (AD/MCI)): 72%
@7) 2021 MRI DEMNET Kaggle- 6400 Images, classes  Acc (4 class): 95.23%
(MID:896),  (MOD:3200),
(ND:2240), and (VMD:64)
@8 2021 T1-weighted Dense CNN ADNI -933 images, class (AD:  Acc: 92.52%, Sensitivity: 88.20%, Speci-
MRI 326, CN: 607) ficity: 94.95%, AUC: 97.89.
29) 2021 Cross- sec- Fused Deep  ADNI- 503 images, class (AD:  Acc (CN /AD): 0.86 + 0.04 Acc (CN
tional MRI Learning models 266, MCI: 104, CN: 132). /MCI /AD): 0.85 + 0.03 Acc (CN /AD/
MCI)): 0.89 +0.03
(0) 2021 T1-weighted CNNs ADNI- 450 Images, classes Acc (NC Vs. AD): 90% Acc (MCI Vs.
MRI (AD -150, MCI -150,NC -150)  AD):87% Acc (NC Vs. MCI):83%
G 2022 MRI U-net MSD- 263 3D mono modal Accuracy: 99.7%, Dice: 89.00%, Speci-
MRI volumes ficity: 99.00%,
(15) 2022 MRI NCSA, and  ADNI- 1,251 images, subjects ~ ADNI (Acc: 89.2%, Sen: 90.3% Spe: 94%,
GDMM (AD: 419, CN: 832) AIBL- 530  Auc: 90%) AIBL (Acc: 92.2% Sen: 82.9%

images, subjects (AD: 79, CN:
451)

Spe: 85. 5%, Auc: 88.9)

Continued on next page
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Table 1 continued

€Y 2022 Tiw and T2w UNET CNN Kulaga&#8209;Yoskovitz- 25  Kulaga-Yoskovitz (Acc: 0.9001 & 0.0130
MR images subjects Winterburn dataset-  Winterburn (Acc: 0.7202 4 0.0288)
5 subjects
(32) 2022 T1-weighted Res SEblock GAN  ADNI- 130 subjects Dice coeflicient: 0.8946 Jaccard coeffi-
MRI cient: 0.8518
(33) 2022 MRI+PET Convolutional ADNI-1 and ADNI -2: 959  Acc (NC /AD): 98.24% Acc (MCI /NC):
auto-encoder and  images, class NC:264 sMCIL:  94.59% Acc (pMCI / sMCI)): 87.25%
CNN 273 pMCI: 204 AD: 218
(4) 2022 T1- CNN ADNI- 450 classes (AD-163, ACC: 96.12, SEN: 94.99, SPE: 97.73,
weighted MRI MCI-163, NC-163) Precision: 95.50, F1-score:95.23
(14 2022 MRI ADD-Net Kaggle- 6400 samples, (NOD:  ACC: 97.05, AUC: 99.89, Recall: 97,
3200, VMD: 2240, MD: 896, Precision: 97, F1-score:97.05
and MOD: 64)
(35 2022 MRI DCNN ADNI- 2619 images, subjects AUROC: 89.21%
(CN: 782 MCI: 1089) AD: 748)
NACC- 2025 (CN: 1281 MCIL:
322) AD: 422)
(36) 2022 MRI Conditional OASIS- 382 (ND: 167 VMD:  Acc: 99 %
Triplet-VGG 87 MD: 105 MAD: 23)
(7) 2022 3D MRI Resnet ADNI and AIBL ADNIBACC: 0.766 + 0.015 ADNI AUC:
0.843+0.016 AIBL BACC: 0.7284-0.015,
AIBL AUC: 0.81340.015
(8) 2022 MRI 3D CNN ADNI- (AD: 975, MCI: 582) AUROC = 0.973
(9) 2023 MRI DCNN ADNI- (NC: 801, MCL: 617, ACC: 98.68, SPE: 99.74, Recall: 98.68
EMCI:333, LMCI:178, SMC: Precision: 95.50, F1: score:98.68
111, AD:416)
(40) 2023 MRI VGGNetand LFA  Kaggle- (MID: 896, MOD: 64, ACC: 0.98, PR:0.99, PRE: 0.99, and FS:
algorithm ND: 3200, and VMD: 2240) 0.99
1 2023 MRI Curvelet Kaggle- (MID: 896, MOD: 64,  Acc: 98.62% F1: score: 99.21%
Transform-based ND: 3200, and VMD: 2240)
CNN
(42) 2023 MRI  (axial, CNN ADNI- 300, subjects (100 AD, ACC: 0.98, PR:0.99, PRE: 0.96, and FS:
coronal, sagit- 100 MCI, and 100 NC) 0.97
tal)
(43) 2023 MRI CNN ADNI- 2294, subjects (133  Acc: 95.18%

AD, 311 MCI, and 195 CN)
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o Over-fitting: Deep learning algorithms need a lot of
data compared to their number of parameters because
they are complicated. However, obtaining sufficient data
for training DL models for AD diagnosis is challenging
due to privacy restrictions, data decentralization, and
the high cost of obtaining labeled data. Over-fitting
remains a concern when training DL models on limited
datasets, potentially leading to poor generalization
performance.

o Interpretability and Transparency: DL models are
not transparent by nature, It makes understanding the
features the model learns difficult and the reasoning
behind its predictions. The development of clinically
interpretable models is hampered by this lack of
transparency, which makes it difficult to determine the
significance of traits in AD diagnosis.

o Reproducibility: DL algorithms’ success is based upon
hyperparameters such batch size, dropout rate, and
learning rate. Reproducing experimental results across
different settings and datasets can be challenging due to
variations in hyperparameter values, data preprocessing
techniques, and random initialization of model weights.
Ensuring reproducibility is essential for validating the
toughness and generalizability of DL models for AD
diagnosis.

« Integration with Clinical Workflows: Seamless com-
patibility with clinical decision support tools, medical
imaging systems, and electronic health records is nec-
essary for integrating DL models into current clinical
processes. However, the complexity of DL algorithms
and the lack of standardized protocols for data integra-
tion pose challenges in deploying DL-based solutions in
clinical settings. Collaborative data sharing initiatives
among healthcare institutions and research organiza-
tions, supported by regulatory frameworks, can address
data scarcity and quality challenges in AD diagnosis
using DL models. Leveraging transfer learning and data
augmentation techniques can mitigate over-fitting con-
cerns, enhancing model generalization from limited

datasets. Developing Explainable AI (XAI) methods tai-
lored to AD diagnosis can improve model interpretabil-
ity and transparency, fostering trust among clinicians.
Standardizing protocols and benchmarking studies can
enhance reproducibility and guide future research and
clinical implementation. Integration of DL models into
Clinical Decision Support Systems (CDSS) can optimize
diagnostic decision-making, while multimodal fusion
techniques and biomarker discovery enable personal-
ized treatment strategies and disease monitoring. These
efforts collectively advance DL-based AD diagnosis,
enhancing patient care and outcomes.

Conclusions

In this work, we approved out a thorough examination of the
most advanced techniques now employed to diagnose AD,
with an additional focus on Deep Learning approaches. Based
on neuroimaging data, we investigated the efficacy of several
DL models, such as CNNs, DNNs, RNNs, AEs, DBNs, GANS,
and hybrid deep learning models, in modelling the course of
AD. We additionally looked at the vast range of biomarkers,
such as speech transcripts, genetic testing, MRI, fMRI, PET,
EEG, MEG, and CSF tests, that are crucial for the diagno-
sis of AD. We also found well-known datasets that are used
in research on AD diagnosis, including the ADNI, OASIS,
Dementia Bank, HABS, and MCSA datasets. We found that
CNN was the most popular deep learning technique for diag-
nosing AD after a comprehensive examination of the litera-
ture, with hybrid DL models following closely behind. More-
over, MRI and the ADNI dataset emerged as predominant
choices for biomarkers and datasets in DL-based AD diag-
nosis studies, respectively. Even with the significant progress
made possible by DL methods in AD diagnosis, several obsta-
cles still exist. These challenges include issues of overfitting,
data quality assurance, interpretability of DL models, trans-
parency in decision-making processes, and reproducibility of
results. In order to guarantee the dependability and relevance
of DL-based techniques in clinical contexts, these obstacles
must be removed.
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