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Abstract

For industries like manufacturing, cold storage, and pharmaceuticals to
maintain steady cooling, industrial HVAC refrigeration systems are essential.
But because they are always in use, they are vulnerable to malfunctions that
result in expensive downtime and inefficient use of energy. Conventional
maintenance techniques are frequently inefficient or reactive. A low-cost, Al-
based predictive maintenance system for small-to-medium-sized businesses
is presented in this paper. The system tracks important parameters like
temperature, vibration, and power consumption using real-time data from
Internet of Things sensors that are connected to an ESP32 module. High
accuracy fault prediction and anomaly detection are achieved by a hybrid
machine learning model that combines an LSTM Autoencoder with a Random
Forest classifier and regression. A chatbot and mobile app are part of the setup
for easy-to-use monitoring. The solution can support more dependable and
sustainable HVAC operations by lowering maintenance costs, improving energy
efficiency, and reducing unplanned breakdowns.

Keywords: Predictive Maintenance; HVAC systems; |oT; Machine Learning; Fault Detection;
LSTM Autoencoder; Random Forest; Sustainability

Introduction

The dependability and effectiveness of
machinery are crucial in today’s data-
driven industrial environment to guaran-
tee continuous operations in industries
like manufacturing, cold storage, phar-
maceuticals, and food processing. Among
these devices, HVAC (heating, ventila-
tion, and air conditioning) systems—
in particular, industrial refrigeration
units—are crucial for preserving envi-
ronments that are sensitive to tempera-
ture changes. However, because of their

mechanical complexity and constant
operation, these systems are vulnerable
to unanticipated malfunctions that can
lead to high maintenance costs, product
spoilage, and energy waste. Such failures
are frequently not prevented by reactive,
time-based maintenance procedures,
particularly in small and medium-sized
businesses (SMEs) that lack the fund-
ing for advanced monitoring. Because
of costly commercial solutions or infras-
tructure requirements, predictive main-
tenance (PdM) is not as widely adopted
in cost-sensitive environments as it
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could be. However, PAM offers a more proactive approach by
identifying anomalies prior to failures.

The need for an affordable, easily accessible PAM solu-
tion specifically designed for industrial HVAC systems is
addressed by this project. The suggested system seeks to
democratize predictive maintenance for smaller industries by
fusing machine learning methods, an intuitive user interface,
and reasonably priced IoT hardware. To support smarter,
more sustainable operations, the solution is designed to guar-
antee real-time monitoring, early fault detection, and mini-
mal user intervention.

The contributions of this paper are threefold:

1. Design and implementation of a prototype predictive
maintenance system using low-cost sensors and an
ESP32 microcontroller.

2. Development of a hybrid ML pipeline tailored for
time-series anomaly detection and fault classification
using real-time data.

3. Deployment of a mobile application integrated with
a chatbot to enable intuitive user interaction with live
system diagnostics.

Literature Review

Recent studies have explored AI-based HVAC fault prediction
using supervised and unsupervised learning models:

« SVM and Decision Trees have been effective but
struggle with complex faults 1-).

o LSTM models demonstrate strength in time-series
analysis but are resource-heavy®.

o Random Forest and Gradient Boosting offer robust
classification in noisy environments >,

« Deep Reinforcement Learning improves efficiency but
lacks real-world deployment readiness?.

Although several sophisticated predictive maintenance sys-
tems have demonstrated excellent fault detection capabilities,
many of them depend on cloud infrastructure or proprietary
hardware, which may restrict their affordability and real-time
responsiveness for small-scale industries"®. On the other
hand, our system offers a responsive and affordable substitute
that is appropriate for SME settings by utilizing open-source
hardware and lightweight cloud services.

Methodology

A. Sensor Deployment and Data Acquisition

These sensors interface with an ESP32 microcontroller.
Sensor readings are captured every 30 seconds and sent via
HTTP POST requests to a cloud endpoint. Data is then stored
in a Supabase PostgreSQL database.

Table 1. Market Survey

Service Provider Key Features Limitations
Siemens Siemens Advanced diag-  Expensive;
Desigo CC nostics, energy  requires
monitoring proprietary
hardware
IBM Max- IBM Asset lifecycle  Enterprise-tier
imo management, only
Al-based PdM
AzureloT+ Microsoft  Scalable, real- Requires cloud
ML time analytics infrastructure
& expertise
Fiix by  Rockwell CMMS  with  Subscription-
Rockwell Automa- PdM capabili- based, limited
tion ties hardware
flexibility
Table 2. Component Survey
Sensor Measured Parameter  Specs
DS18B20 Temperature -55°Cto 125°C
DHT22 Humidity 0-100% RH
ACS712 Current Up to 30A
ZMTP101B Voltage Up to 250V
MQ-6 Gas (R134a, Ammo- ppm sensitivity
nia, etc.)
ADXL335 Vibration +3g
Table 3. Sensor Deployment
Sensor Measured Parameter Mounted On
DS18B20 Temperature Evaporator Coil
DHT22 Humidity Air Intake
ACS712 Current Compressor Circuit
ZMTP101B Voltage Power Supply
MQ-6 Gas Leak Near  Refrigerant
Lines
ADXL335 Vibration Compressor Body

B. Cloud & Machine Learning Layer

1. Data Preprocessing
o Missing data is filled using linear interpolation.
o Outliers are replaced using median filtering.
o Datais normalized, and new features are derived (Power
Consumption, Temperature Difference, etc.).

2. Model Architecture
o LSTM Autoencoder: Learns baseline behavior and flags
anomalies based on reconstruction error.
o Random Forest Classifier: Assigns fault labels to
detected anomalies using supervised learning.
o Random Forest Regressor: The Health Index Estimation
Model estimates the equipment’s health index as a
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continuous value between 0 and 100.

o Multi-Class Classifier DLNN: The Part Risk Prediction
Model predicts which component is most likely to fail
and assesses its condition based on sensor data.

3. Training
o Models built in TensorFlow and Scikit-learn.
o Data split: 70% training, 15% validation, 15% test.

o Performance metrics: RMSE, Fl-score, Precision,
Latency (<1s).
o Synthetic faults added for robustness.
Hardware Layer
DS18B20 1 ACS712
{Temperature) (Current)
DS18B20 2 v ZMPT101B
{Temperature) 1 —‘_J— (Voltage)
— Microcontroller S E—
(ESP32)
DS18B20 3 | ADXL335
(Temperature) A (Vibration)
DHT22
(Temperature ?é?s?
+ Humidity)
v

Cloud Storage

Fig 1. Hardware Layer
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Fig 2. Cloud and ML Backend

C. User Interface Layer

C1. Mobile Dashboard:
The mobile app is built using React Native, supporting both
Android and iOS platforms. It displays:

Chatbot Backend Server
(Express.js)

. Sen(ds User's query
Query Reception l¢— to backend using

& PIeprocessing | yrrirp post request

Processed

Query Software Application (React-Native)
Intent

Recognition
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(Prediction or  [,50dd on query’
Real Time)

Sensors
Data

Predictions
Data
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:

l4«—Feiched Dat. Cloud Storage (Supabase)

Fig 3. Chatbot Backend and Mobile App

o Live sensor readings (temperature, current, vibration,
etc.).

o Fault probabilities and system health scores.

o Alerts and historical fault logs.

The app fetches data through secure HTTPS requests to
cloud APIs and enforces user authentication using Supabase
Auth. It supports role-based access, showing tailored views for
administrators and technicians.

C2. Chatbot Interface:

To simplify access, a built-in chatbot allows users to ask
questions like “Is the compressor working fine?” or “What
faults were detected today?”

The chatbot runs on a backend built with Express.js and
uses an LLM (Large Language Model) via OpenATI’s API to
interpret queries. It retrieves the latest data or predictions
from the Supabase database and replies in plain language.

The backend uses a prompt-template wrapper for OpenAl
GPT API to interpret the user’s intent, executes appropriate
REST queries to Supabase, constructs a response in natural
language and sends it back to the app.

This interface enables non-technical users to interact
with the system naturally, without needing to understand
dashboards or charts.

D. Testing and Validation

The complete system was tested on real refrigeration units
under various conditions—such as high humidity, power
fluctuations, and simulated faults.

o The system successfully detected common faults (like
refrigerant leaks and compressor inefficiencies) within
5 minutes.
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o Prediction accuracy was validated against manually
logged fault events.

« Theapp and chatbot were evaluated for usability by non-
technical users, who were able to navigate the interface
and understand the results with minimal guidance.

Results

The hybrid machine learning model, combining an LSTM
Autoencoder for anomaly detection with a Random Forest
classifier for fault identification, Random Forest Regressor
for Health Estimation and a DLNN Multi-class classifier for
component failure prediction was evaluated on data collected
over 10 days. The LSTM effectively detected deviations
from normal behavior, while the Random Forest classifier
achieved high accuracy in categorizing faults—particularly
for common issues like compressor short cycling. The
model maintained consistent performance across validation
folds and demonstrated fast inference times, confirming its
suitability for real-time applications. These results validate
the system’s potential for reliable and responsive predictive
maintenance.

The mobile dashboard provides a unified view of system
data in real time (Figure 4). Key parameters like zone-
wise temperature, compressor vibration, humidity, and power
metrics are visualized to support quick diagnostics. This
interface enables technicians to detect abnormalities without
complex tools.

Evaporator Coil Freezer Temperature
Temperature

-1.0 -15.0c

Fridge Temperature Air Temperature

5.0 23.3

Humidity Compressor Vibration

37.5 0.5mmis

Compressor Current Input Voltage

1.4- 16.0

Gas Leakage Level Power Consumption

Fig 4. Dashboard depicting parameters for all components

Figure 5 highlights the NLP-powered chatbot integrated
into the app. It allows users to query system health, request
fault predictions, or interpret recent anomalies using conver-

Chatbot

What is present freezer
temperature?

The current temperature in the
freezer is -15 degrees Celsius

If you have any other questions
about your appliance, feel free to
ask!

Is there any issues with current
values?

Everything looks good with the
current values! All parameters are
within normal ranges, so there
are no issues to report. Here are
some specifics: the evaporator
coil temperature is at -1°C, the
freezer is at =15°C, and the fridge
temperature is holding steady at
5°C. Humidity is at 37.47%, and
compressor vibrations are normal
as well. Overall, everything is
functioning properly!

Fig 5. Chatbot section where user can ask his/her query

B28 © 4 S 560 i B 29%,

Predictions
‘e maintenance
025 8:28 PM

ANOMALY FAILURE
DETECTION PROBABILITY
i 0.0%

0 anamalies dete
out of 1 readir

HEALTH INDEX PART AT RISK
98.9/100 None

Equipment health score Component predicted to
(higher is better) be at risk of failure
Overall Status Normal
Total Predictions 1

o All systems normal

@ ~ 0 @

Predictions

Fig 6. Predictions using ML model
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sational input. The chatbot enhances accessibility for non-
technical users.

Figure 6 demonstrates how the mobile application
presents live prediction results from the ML pipeline. It
displays system-level insights such as anomaly detection rate,
component-level failure probability, overall health index, and
component risk status. The app computes and visualizes this
data in real time, helping users monitor system performance
at a glance and take proactive action if needed.

Discussion

The findings show that the suggested system effectively com-
bines machine learning, real-time data infrastructure, and
inexpensive IoT hardware for HVAC predictive maintenance.
The system’s practicality and efficacy were enhanced by each
of its parts.

Critical HVAC parameters like temperature, current, and
vibration could be accurately monitored at high frequen-
cies thanks to the sensor and ESP32-based hardware layer.
Affordability was guaranteed without sacrificing data quality
by using widely accessible, reasonably priced sensors. Consis-
tent performance and robustness were demonstrated during
testing under various operating conditions.

Fast and accurate fault detection, classification, and health
evaluation were provided by the cloud storage and machine
learning layer. The LSTM Autoencoder used reconstruction
error to identify deviations as anomalies after learning base-
line behavior patterns. A Random Forest Classifier, which
used supervised learning to assign fault labels, was then used
to classify the detected anomalies. A Random Forest Regres-
sor calculated a continuous health index with a range of 0 to
100 to measure the overall health of the system, giving a useful
overview of the state of the equipment. The component most
likely to fail was also predicted using a multi-class deep learn-
ing model. With the use of real-time sensor data, this model
evaluated the conditions of individual components, allow-
ing for more focused maintenance choices. With low-latency
inference appropriate for ongoing industrial monitoring, the
combination of these models guaranteed both thorough sys-
tem diagnostics and precise fault prediction.

System accessibility was greatly aided by the chatbot inter-
face and mobile application. While the chatbot enabled non-
technical users to ask questions about the status of the sys-
tem using natural language, the dashboard gave technicians
access to real-time system metrics and alerts. When com-
bined, these interfaces facilitated speedier maintenance deci-
sions and decreased the need for manual diagnostics. The sys-
temy’s functionality was confirmed by its performance in real-
time tests. Predictions and manual fault logs showed a high

degree of agreement, and faults were found within five min-
utes of occurrence. Deployment in other HVAC configura-

tions is also made simf)le by the modular design.
But there are still certain difficulties. High-frequency

data transmission revealed notification delays, indicating
the need for additional backend optimization. Furthermore,
even though the system was tested on domestic units,
extensive industrial validation is necessary to guarantee wider
scalability.

All things considered, the system fills a significant void
in predictive maintenance tools for small and medium-sized
businesses with an affordable and intuitive solution.

Conclusion

An Al-based predictive maintenance system designed specifi-
cally for HVAC refrigeration units is presented in this project.
Early fault detection and real-time health monitoring are
made possible by the system’s integration of cloud infrastruc-
ture, inexpensive IoT hardware, and a hybrid machine learn-
ing model. Proactive maintenance decisions are supported by
the chatbot interface and mobile application, which guarantee
accessibility for both technical and non-technical users.

The system’s responsiveness, dependability, and appropri-
ateness for small-to-medium-sized businesses are all con-
firmed by test results. Future additions to other industrial
equipment are possible due to its modular design. The solu-
tion has a great potential to decrease downtime, increase
equipment lifespan, and boost energy efficiency in practical
settings with additional validation and optimization.
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