International Journal of Electronics and Computer Applications

Volume: 2 Issue: 1

  • Open Access
  • Original Article

Automated Navigation Technology

Rutvij Mahale1, Samiksha1, Samiksha Tiwari1, Shreyasi Watve1∗

1Electronics & Telecommunication, PES Modern College of Engineering, Pune, Maharashtra, India

Corresponding author. Email:[email protected]

Year: 2025, Page: 143-147, Doi: https://doi.org/10.70968/ijeaca.v2i1.E1011

Received: Feb. 18, 2025 Accepted: July 10, 2025 Published: July 18, 2025

Abstract

Automated Navigation Technology is a game-changer, disrupting autonomous systems and processes across transportation, logistics, and robotics. At the heart of automated navigation technology are advanced systems made up of sophisticated components such as GPS for precise geographic location, IR sensors for mapping of the environment and obstacle detection, and computer vision that detects and recognizes the environment visually in real-time. The key functions identified in automated navigation are facilitated by machine learning and artificial intelligence algorithmic programs for real-time decision making, adapting to the environment, and path-planning, all in real-time. With this combination of technology, autonomous vehicles, drones, and robots can traverse complex terrains, avoid obstacles or hazards, and ensure the safety of passengers or others with minimal human intervention. This report looked at all components and their functionality above, and their interplay, and is useful for understanding automated navigation architectures. This report also identified and discussed areas of importance, such as sensor fusion, real-time data processing, and system robustness in non-structured environments. Applications in automated cars, unmanned aerial vehicles, and more complex industrial automation were reviewed with benefits associated with increased efficiencies, cost-constraining methods, and safety. The overarching conclusion from our review is that while we have demonstrated where you can go with this technology, it will require several advancements in machine learning, sensors, and safety protocols before it becomes mainstream, reliable, and capable of operating in unstructured environments

Keywords: Automated Navigation Technology

References

  1. Guo Y, Jena R, Hughes D, Lewis M, Sycara K. Transfer Learning for Human Navigation and Triage Strategies Prediction in a Simulated Urban Search and Rescue Task. In: 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). (pp. 784-791) 2021.

  2. Polevoy A, Knuth C, Popek KM, Katyal KD. Complex Terrain Navigation via Model Error Prediction. In: 2022 International Conference on Robotics and Automation (ICRA). (pp. 9411-9417) IEEE. 2022.

  3. Gauthier-Clerc F, Hill A, Laneurit J, Lenain R, Lucet E. Online velocity fluctuation of off-road wheeled mobile robots: A reinforcement learning approach. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). (pp. 2421-2427) IEEE. 2021.

  4. He Q, Wang Z, Li K, Zhang Y, Li M. Research on autonomous navigation of mobile robots based on IA-DWA algorithmScientific Reports. 2025;15(1):2099. Available from: https://doi.org/10.1038/s41598-024-84858-3

  5. Chang L, Shan L, Jiang C, Dai Y. Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environmentAutonomous Robots. 2021;45(1):51–76. Available from: https://dx.doi.org/10.1007/s10514-020-09947-4

  6. Li Q, Ma Q, Weng X. Dynamic path planning for mobile robots based on artificial potential field enhanced improved multiobjective snake optimization (APF‐IMOSO) Journal of Field Robotics. 2024;41(6):1843–1863. Available from: https://dx.doi.org/10.1002/rob.22354

  7. Zeng Q, Ou B, Lv C, Scherer S, Kan Y. Monocular Visual Odometry Using Template Matching and IMUIEEE Sensors Journal. 2021;21(15):17207–17218. Available from: https://dx.doi.org/10.1109/jsen.2021.3078847

  8. Li G, Liu C, Wu L, Xiao W. A mixing algorithm of ACO and ABC for solving path planning of mobile robotApplied Soft Computing. 2023;148:110868. Available from: https://dx.doi.org/10.1016/j.asoc.2023.110868

  9. Petrović M, Jokić A, Miljković Z, Kulesza Z. Multi-objective scheduling of a single mobile robot based on the grey wolf optimization algorithmApplied Soft Computing. 2022;131:109784. Available from: https://dx.doi.org/10.1016/j.asoc.2022.109784

  10. Xu L, Cao M, Song B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithmNeurocomputing. 2022;473:98–106. Available from: https://dx.doi.org/10.1016/j.neucom.2021.12.016

  11. Sivaranjani S, Nandesh DA, Gayathri K, Ramanathan R. An investigation of bug algorithms for mobile robot navigation and obstacle avoidance in two-dimensional unknown static environments. In: 2021 International Conference on Communication information and Computing Technology (ICCICT). (pp. 1-6) IEEE. 2021.

  12. Patel R, Kumar S. Optimizing crop management with AI-integrated dronesCompute. Electron. Agric. 2021;180:105–115.

  13. Garcia D, Lopez F. Enhancing logistics with AI-driven drone delivery systemsTransp. Res. Part C: Emerg. Technol. 2020;115:102–112.

  14. Nguyen T, Tran H. Autonomous drones for urban delivery: Challenges and solutionsIEEE Trans. Intel. Transp. Syst. 2019;20:1855–1865.

  15. Smith J, Johnson T. The role of AI-enabled drones in disaster reliefJ. Field Robot. 2023;40:123–135.

  16. Khan A, Smith L. Application of artificial intelligence in enhancing drone capabilitiesInt. J. Robot. Res. 2023;41:210–225.

  17. Tan AH, Bejarano FP, Zhu Y, Ren R, Nejat G. Deep Reinforcement Learning for Decentralized Multi-Robot Exploration With Macro ActionsIEEE Robotics and Automation Letters. 2023;8(1):272–279. Available from: https://dx.doi.org/10.1109/lra.2022.3224667

  18. He Y, Hou T, Wang M. A new method for unmanned aerial vehicle path planning in complex environmentsScientific Reports. 2024;14(1):9257. Available from: https://dx.doi.org/10.1038/s41598-024-60051-4

  19. Domanico A. Hawk attacks drone in a battle of claw versus machine. CNET. Oct. 10, 2014. Available from: https://www.cnet.com/tech/computing/this-hawk-has-no-love-for-your-drone/

  20. Falanga D, Kim S, Scaramuzza D. How Fast Is Too Fast? The Role of Perception Latency in High-Speed Sense and AvoidIEEE Robotics and Automation Letters. 2019;4(2):1884–1891. Available from: https://dx.doi.org/10.1109/lra.2019.2898117

Cite this article

Mahale R, Samiksha , Tiwari S, Watve S. (2025). Automated Navigation Technology. International Journal of Electronics and Computer Applications. 2(1):143-147. https://doi.org/10.70968/ijeaca.v2i1.E1011

Views
58
Downloads
29
Citations