International Journal of Electronics and Computer Applications

Volume: 2 Issue: 1

  • Open Access
  • Original Article

Key Event Detection and Video Summarization System

Mrunendra Belhe1, Sankalp Diwan1, Seema Bhalgaonkar1

1Department of Electronics & Telecommunication, PES Modern College of Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India

 

Year: 2025, Page: 79-82, Doi: https://doi.org/10.70968/ijeaca.v2i1.D1002

Received: March 12, 2025 Accepted: June 22, 2025 Published: July 18, 2025

Abstract

The way deep learning methods process, analyze, and summarize multimedia content has evolved significantly in the past few years. This review concentrates on the latest developments in video summarization, key event detection, and text generation, focusing on the implementations of CNNs, RNNs, transformers, and reinforcement learning models. Unlike modern approaches which exhibit contextual understanding, coherence, diversity, dynamic responsiveness, and real-time adaptability, traditional heuristic and rule-based systems stagnated due to a lack of scalability. The review includes cycle-consistent GANs, query-dependent summarization, boundary-aware event detection, and attention- based text generation ignoring mention. This paper sets out to compare and analyze methods published after 2015 to establish performance benchmarks alongside domain applications and enduring difficulties such as computational demand and personalization. The goal is to enhance intelligent content analysis and AI multimedia systems.

Keywords: Key Event Detection and Video Summarization System

References

  1. Saini P, Kumar K, Kashid S, Saini A, Negi A. Video summarization using deep learning techniques: a detailed analysis and investigationArtificial Intelligence Review. 2023;56(11):12347–12385. Available from: https://dx.doi.org/10.1007/s10462-023-10444-0

  2. Yuan L, Tay FEH, Li P, Zhou L, Feng J. Cycle-SUM: Cycle-consistent adversarial LSTM networks for unsupervised video summarization. 2019. Available from: https://doi.org/10.48550/arXiv.1904.08265

  3. Li P, Ye Q, Zhang L, Yuan L, Xu X, Shao L. Exploring global diverse attention via pairwise temporal relation for video summarizationPattern Recognition. 2021;111:107677. Available from: https://dx.doi.org/10.1016/j.patcog.2020.107677

  4. Alaa T, Mongy A, Bakr A, Diab M, Gomaa W. Video Summarization Techniques: A Comprehensive ReviewProceedings of the 21st International Conference on Informatics in Control, Automation and Robotics. 2024;p. 141–148. Available from: https://www.scitepress.org/Papers/2024/129364/129364.pdf

  5. Messaoud S, Lourentzou I, Boughoula A, Zehni M, et al. DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video SummarizationSIGIR '21: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieva. 2021;p. 1389 –1399. Available from: https://doi.org/10.1145/3404835.3462959

  6. He X, Deng L. Deep Learning for Image-to-Text Generation: A Technical OverviewIEEE Signal Processing Magazine. 2017;34(6):109–116. Available from: https://dx.doi.org/10.1109/msp.2017.2741510

  7. Guo H. Generating text with deep reinforcement learning. 2015. Available from: https://doi.org/10.48550/arXiv.1510.09202

  8. Iqbal T, Qureshi S. The survey: Text generation models in deep learningJournal of King Saud University - Computer and Information Sciences. 2022;34(6):2515–2528. Available from: https://dx.doi.org/10.1016/j.jksuci.2020.04.001

  9. Shorten C, Khoshgoftaar TM, Furht B. Text Data Augmentation for Deep LearningJournal of Big Data. 2021;8(1):1–54. Available from: https://dx.doi.org/10.1186/s40537-021-00492-0

  10. Peronikolis M, Panagiotakis C. Personalized Video Summarization: A Comprehensive Survey of Methods and DatasetsApplied Sciences. 2024;14(11):4400. Available from: https://dx.doi.org/10.3390/app14114400

  11. Banjar M, Ahmad R, Abidin AMZ. BASE: Boundary-aware scene extraction for video summarization using BiLSTMMultimedia Tools and Applications. 2023;82:2105–2130. Available from: http://dx.doi.org/10.1007/978-3-031-26316-3_29

  12. Huang Y, Liu T, Wu Z. Multimodal transformer for sports event detection in video streamsIEEE Access. 2024;12:44512–44524. Available from: https://doi.org/10.1109/ACCESS.2024.3280401

  13. Aggarwal CC, Subbian K. Event detection in social streamsProc. of the 2019 SIAM International Conference on Data Mining. 2019;p. 624–635. Available from: https://doi.org/10.1137/1.9781611975673.70

  14. Tiwari V, Bhatnagar C. A survey of recent work on video summarization: approaches and techniquesMultimedia Tools and Applications. 2021;80(18):27187–27221. Available from: https://dx.doi.org/10.1007/s11042-021-10977-y

  15. Khurana D, Koli A, Khatter K, Singh S. Natural language processing: state of the art, current trends and challengesMultimedia Tools and Applications. 2023;82(3):3713–3744. Available from: https://dx.doi.org/10.1007/s11042-022-13428-4

Cite this article

Belhe M, Diwan S, Bhalgaonkar S. (2025). Key Event Detection and Video Summarization System. International Journal of Electronics and Computer Applications. 2(1): 79-82. https://doi.org/10.70968/ijeaca.v2i1.D1002

Views
48
Downloads
24
Citations