International Journal of Electronics and Computer Applications

Volume: 2 Issue: 1

  • Open Access
  • Review Article

Machine Learning Techniques for Kidney Tumor Detection: A Literature Review

S H Barshikar1, S S Lokhande2∗

1Research Scholar, Sinhgad College of Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India
2Professor, Sinhgad College of Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India

Corresponding author.Email: [email protected]

Year: 2025, Page: 102-108, Doi: https://doi.org/10.70968/ijeaca.v2i1.D1007

Received: Feb. 22, 2025 Accepted: June 10, 2025 Published: July 22, 2025

Abstract

Abnormal growths in the kidneys known as kidney tumors can be harmful if they are not discovered in time. It's critical to identify them promptly and accurately in order to save lives. In this study, we employ machine learning, a kind of computer software that learns from data, to make it easier for medical professionals to identify kidney cancers. In order to teach the computer to distinguish between kidneys that are healthy and kidneys that have tumors, we gather medical images of kidneys. To determine the most accurate and efficient approach, many machine learning algorithms are explored. Our findings demonstrate that kidney cancers can be accurately detected by machine learning, speeding up the diagnosis process and assisting medical professionals in making better judgments. With an accuracy of 0.95, Most of the cases were correctly predicted by the study. Furthermore, we focused on precisely identifying the Region of Interest (ROI), or the exact location of the tumor in the kidney. The ROI was effectively highlighted by the study model, assisting physicians in rapidly concentrating on the impacted area.

Keywords: Machine Learning Techniques for Kidney Tumor Detection: A Literature Review

References

  1. Lakshmi BS, Anand RV, Birunadevi M, Omounde H, SM, Brahmam MG. Deep Learning for Automated Classification of Kidney Lesions in Chronic Kidney Disease Patients. In: 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS). IEEE. 2024.

  2. Rajagopal K, Kumari VS, Saraswathy S, Ponmaniraj S, Kumar V, Deepa A. Improving the Detection of Kidney tumors using Firefly Algorithm Optimisation. In: 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI). IEEE. 2024.

  3. Kumar A, Nelson L, Venu VS. Enhancing Kidney Disease Classification through Transfer Learning with VGG16. In: 2024 2nd International Conference on Computer, Communication and Control (IC4). (pp. 1-6) IEEE. 2024.

  4. Rajkumar K, Ramoju RTS, Balelly T, Ashadapu S, Prasad CR, Srikant Y, et al. Kidney Cancer Detection using Deep Learning Models. In: 7th International Conference on Trends in Electronics and Informatics(ICOEI). (pp. 979-987) IEEE. 2023.

  5. Sri VS, Lakshmi GRJ. Detection Analysis of Abnormality in Kidney using Deep Learning Techniques and its Optimization. In: 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). IEEE. 2023.

  6. Gaikar R, Azad A, Schieda N, Ukwatta E. Fully Automated Deep Learning-Based Renal Mass Detection on Multi-Parametric MRIIEEE Access. 2024;12:112714–112728. Available from: https://dx.doi.org/10.1109/access.2024.3440259

  7. Magherini R, Servi M, Volpe Y, Campi R, Buonamici F. Distinguishing Kidney Tumor Types Using Radiomics Features and Deep FeaturesIEEE Access. 2024;12:84241–84252. Available from: https://dx.doi.org/10.1109/access.2024.3412655

  8. Patel VV, Yadav AR, Jain P, Cenkeramaddi LR. A Systematic Kidney Tumour Segmentation and Classification Framework Using Adaptive and Attentive-Based Deep Learning Networks With Improved Crayfish Optimization AlgorithmIEEE Access. 2024;12:85635–85660. Available from: https://dx.doi.org/10.1109/access.2024.3410833

  9. Pande SD, Agarwal R. Multi-Class Kidney Abnormalities Detecting Novel System Through Computed TomographyIEEE Access. 2024;12:21147–21155. Available from: https://dx.doi.org/10.1109/access.2024.3351181

  10. Sitanaboina SLP, Beeram SR, Jonnadula H, Paleti L. Attention 3D-CU-Net:Enhancing Kidney Tumor segmentation Accuracy Through Selective Feature EmphasisIEEE Acess. 2023;11:139798–139810. Available from: https://doi.org/10.1109/ACCESS.2023.3340912

  11. Sharen H, Narendra M, Anbarasi LJ. MSKd_Net: Multi-Head Attention-Based Swin Transformer for Kidney Diseases ClassificationIEEE Access. 2024;12:181975–181986. Available from: https://dx.doi.org/10.1109/access.2024.3510634

  12. Pavarut S, Preedanan W, Kumazawa I, Suzuki K, Kobayashi M, Tanaka H, et al. Improving Kidney Tumor Classification With Multi-Modal Medical Images Recovered Partially by Conditional CycleGANIEEE Access. 2023;11:146250–146261. Available from: https://dx.doi.org/10.1109/access.2023.3345648

  13. Thakur T, Batra I, Malik A, Ghimire D, Kim SH, Hosen ASMS. RNN-CNN Based Cancer Prediction Model for Gene ExpressionIEEE Access. 2023;11:131024–131044. Available from: https://dx.doi.org/10.1109/access.2023.3332479

  14. Subramanian M, Cho J, Sathishkumar VE, Naren OS. Multiple Types of Cancer Classification Using CT/MRI Images Based on Learning Without Forgetting Powered Deep Learning ModelsIEEE Access. 2023;11:10336–10354. Available from: https://dx.doi.org/10.1109/access.2023.3240443

  15. Liu D, Shao J, Liu H, Cheng W. Design on Early Warning System for Renal Cancer Recurrence Based on CNN-Based Internet of ThingsIEEE Access. 2022;10:34835–34845. Available from: https://doi.org/10.1109/ACCESS.2021.3114227

  16. Zhang H, Chen Y, Song Y, Xiong Z, Yang Y, Wu QMJ. Automatic Kidney Lesion Detection for CT Images Using Morphological Cascade Convolutional Neural NetworksIEEE Access. 2019;7:83001–83011. Available from: https://doi.org/10.1109/ACCESS.2019.2924207

  17. Chittora P, Chaurasia S, Chkrabarti P, Kumawat G, Chakrabarti T, Leonowicz Z. Prediction of Chronic Kidney Disease - A Machine Learning PerspectiveIEEE Access . 2021;9:17312–17334. Available from: https://doi.org/10.1109/ACCESS.2021.3053763

  18. Chen G, Ding C, Li Y, Hu X, Li X, Ren L, et al. Prediction of Chronic Kidney Disease Using Adaptive Hybridized Deep Convolutional Neural Network on the Internet of Medical Things PlatformIEEE Access. 2020;8:100497–100508. Available from: https://dx.doi.org/10.1109/access.2020.2995310

  19. Khan B, Naseem R, Muhammad F, Abbas G, Kim S. An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease ProphecyIEEE Access. 2020;8:55012–55022. Available from: https://doi.org/10.1109/ACCESS.2020.2981689

  20. Zabihollahy F, Schieda N, Ukwatta E. Patch -Based Convolutional Neural Network for Differentiation of Cyst From Solid Renal Mass on Contrast-Enhanced Computed Tomography ImagesIEEE Access. 2020;8:8595–8602. Available from: https://doi.org/10.1109/ACCESS.2020.2964755

Cite this article

Barshikar SH, Lokhande SS. (2025). Machine Learning Techniques for Kidney Tumor Detection: A Literature Review. International Journal of Electronics and Computer Applications. 2(1): 102-108. https://doi.org/10.70968/ijeaca.v2i1.D1007

Views
65
Downloads
22
Citations