International Journal of Electronics and Computer Applications

Volume: 1 Issue: 2

  • Open Access
  • Review Article

Advancements in Deep Learning for Alzheimer’s Disease Diagnosis: A Comprehensive Review

Sonali S Bhosale1,2∗, Vaibhav V Dixit3

1 Ph.D. Research Scholar, Research Scholar in Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, (BK), Maharashtra, Vadgaon, Pune, India
2 Assistant Professor, Department of Electronics & Communication Engg., SKN College of Engineering, Pune, Maharashtra, India
3 Director and Principal, RMD Sinhgad School of Engineering, Warje, Maharashtra, India


*Corresponding author email: [email protected]

 

Year: 2024, Page: 60-71, Doi: https://doi.org/10.54839/ijeaca.v1i2.7

Received: Oct. 10, 2024 Accepted: Dec. 16, 2024 Published: Dec. 24, 2024

Abstract

This research aims to advance the diagnosis and management of Alzheimer's disease (AD) by leveraging deep learning methodologies, providing a comprehensive quantitative evaluation of their efficacy compared to traditional machine learning models. A thorough literature review was conducted, focusing on the application of deep learning techniques in AD diagnosis. The study examined various biomarkers and datasets utilized in the field, evaluating their contributions to the accuracy and reliability of diagnostic models. The analysis encompassed both natural language processing and computer vision approaches, highlighting recent trends and innovations. Deep learning models demonstrated superior accuracy in diagnosing AD compared to conventional machine learning techniques. The quantitative analysis revealed significant improvements in early detection and diagnostic precision, showcasing the potential of these advanced methodologies. Despite the advancements, several challenges, such as data variability and model interpretability, were identified, indicating areas for further research. Comparative analysis with existing diagnostic approaches underscored the advancements in accuracy and reliability achieved through deep learning. The novelty of this research lies in its detailed quantitative assessment of deep learning techniques for AD diagnosis, providing a robust foundation for future advancements. Unlike conventional studies, this work offers a comprehensive numerical justification of the efficacy of deep learning models. The integration of diverse biomarkers and datasets, combined with the superior diagnostic performance, sets this study apart, highlighting the potential for significant improvements in AD diagnosis and management through continued innovation in deep learning methodologies.

Keywords: Advancements in Deep Learning for Alzheimer’s Disease Diagnosis: A Comprehensive Review

References

  1. Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diag nosis of Alzheimers diseaseIEEE Transactions on Biomedical Engineering. 2015;62(4):1132–1140. Available from: https://doi.org/10.1109/tbme.2014.2372011

  2. Sarraf S, Tofighi G. Deep Learning-based Classification for Alzheimer’s Disease Detection, IEEE. In: 2016 Future Technologies Conference (FTC). (pp. 1-6) IEEE. 2017.

  3. Zhou J, Goyal A, Yu S, Ding J, Xiong Z. Multi-Modal Deep Learning Framework for Alzheimer’s Disease Diagnosis. In: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). (pp. 2418-2425) IEEE . 2019.

  4. Li Y, Peng Q, Wang F, Yan J, Zeng G. Deep Learning-based Early Diagnosis of Alzheimer’s Disease Using Cerebrospinal Fluid Biomarkers. In: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). (pp. 2434-2438) IEEE. 2019.

  5. Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and TreatmentMolecules. 2020;25(24):1–28. Available from: https://doi.org/10.3390/molecules25245789

  6. Fung G, Moung L, Lo WC, Ng AWY, Lau AYS. Deep Learning-based Natural Language Processing for Alzheimer’s Disease Progression Prediction from Clinical Notes. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM). (pp. 1947-1952) IEEE. 2020.

  7. Armonaite K, Ventura ML, Laura L. Alzheimer’s disease detection from magnetic resonance imaging: a deep learning perspectiveExploration of Neuroprotective Therapy. 2023;3:139–150. Available from: https://doi.org/10.37349/ent.2023.00043

  8. Basher A, Kim BC, Lee KH, Jung HY. Volumetric Feature-Based Alzheimer’s Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural NetworkIEEE Access. 2021;9:29870–29882. Available from: https://dx.doi.org/10.1109/access.2021.3059658

  9. Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature reviewComputer Methods and Programs in Biomedicine. 2020;187. Available from: https://doi.org/10.1016/j.cmpb.2019.105242

  10. Hazarika RA, Maji AK, Sur SN, Paul BS, Kandar D. A Survey on Classification Algorithms of Brain Images in Alzheimer’s Disease Based on Feature Extraction TechniquesIEEE Access. 2021;9:58503–58536. Available from: https://dx.doi.org/10.1109/access.2021.3072559

  11. Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain imagesCognitive Systems Research. 2019;57:147–159. Available from: https://doi.org/10.1016/j.cogsys.2018.12.015

  12. Alam S, Kwon GR, Kim JI, Park C. Twin SVM-based classification of Alzheimer’s disease using complex dual-treewavelet principal coefficients and LDAJournal of Healthcare Engineering. 2017;2017:1–12. Available from: https://doi.org/10.1155/2017/8750506

  13. Liu J, Li M, Luo Y, Yang S, Li W, Bi Y. Alzheimer's disease detection using depthwise separable convolutional neural networksComputer Methods and Programs in Biomedicine. 2021;203. Available from: https://dx.doi.org/10.1016/j.cmpb.2021.106032

  14. Pandey P, Khare A, Srivastava P. Detection of Alzheimer’s disease using CNN architecturesADBU Journal of Engineering Technology. 2022;11(1):1–6. Available from: https://journals.dbuniversity.ac.in/ojs/index.php/AJET/article/view/3672

  15. Acharya UR, Fernandes SL, Weikoh JE, Ciaccio EJ, Fabe MKM, Tanik UJ, et al. Automated detection of Alzheimer’s disease using brain MRI images a study with various feature extraction techniques, PubMedJournal of Medical Systems. 2019;43(9). Available from: https://doi.org/10.1007/s10916-019-1428-9

  16. Tufail AB, Abidi A, Siddiqui AM, Younis MS. Automatic classification of initial categories of Alzheimer’s disease from structural MRI phase images: A comparison of PSVM, KNN and ANN methodsInt. J. Biomed. Biol. Eng. 2012;6(12):713–717. Available from: https://publications.waset.org/15213/automatic-classification-of-initial-categories-of-alzheimers-disease-from-structural-mri-phase-images-a-comparison-of-psvm-knn-and-ann-methods

  17. Kruthika KR, Maheshappa HD, R. CBIR system using Capsule Networks and 3D CNN for Alzheimer's disease diagnosisInformatics in Medicine Unlocked. 2019;14:59–68. Available from: https://doi.org/10.1016/j.imu.2018.12.001

  18. Jo T, Nho K, Risacher SL, Saykin AJ. Deep learning detection of informative features in tau PET for Alzheimer’s disease classificationBMC Bioinformatics. 2020;21:1–13. Available from: https://doi.org/10.1186/s12859-020-03848-0

  19. Silva IRR, Silva GSL, Souza RGD, Santos WPD, Fagundes RADA. Model Based on Deep Feature Extraction for Diagnosis of Alzheimer’s Disease. In: 2019 International Joint Conference on Neural Networks (IJCNN). (pp. 1-7) IEEE. 2019.

  20. He G, Lu T, Zhu H. 2020.

  21. Liu Y, Yan Z. A Combined Deep-Learning and Lattice Boltzmann Model for Segmentation of the Hippocampus in MRISensors. 2020;20(13):1–16. Available from: https://doi.org/10.3390/s20133628

  22. Mehmood A, Maqsood M, Bashir M, Shuyuan Y. A deep siamese convolution neural network for multi-class classification of alzheimer diseaseBrain Sciences. 2020;10(2):1–15. Available from: https://doi.org/10.3390/brainsci10020084

  23. Amini M, Pedram M, Moradi A, Ouchani M. Diagnosis of Alzheimer’s Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN) Computational and Mathematical Methods in Medicine. 2021;2021:1–15. Available from: https://doi.org/10.1155/2021/5514839

  24. Carmo D, Silva B, B CY, Rittner L, Lotufo R. Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networksHeliyon. 2021;7(2):1–9. Available from: https://doi.org/10.1016/j.heliyon.2021.e06226

  25. Oktavian MW, Yudistira N, Ridok A. Classification of Alzheimer's Disease Using the Convolutional Neural Network (CNN) with Transfer Learning and Weighted LossIAENG International Journal of Computer Science. 2023;50(3):1–7. Available from: https://www.iaeng.org/IJCS/issues_v50/issue_3/IJCS_50_3_16.pdf

  26. Orouskhani M, Zhu S, Rostamian S, Zadeh FS, MS, Orouskhani Y. Alzheimer’s disease detection from structural MRI using conditional deep triplet networkNeuroscience Informatics. 2022;2(4):1–7. Available from: https://doi.org/10.1016/j.neuri.2022.100066

  27. Feng X, Provenzano FA, Provenzano, Small SA. A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer's disease, PubMed, NCBIAlzheimer's Research & Therapy. 2022;14(1):1–11. Available from: https://doi.org/10.1186/s13195-022-00985-x

  28. Shamrat FMJM, Akter S, Azam S, Karim A, Ghosh P, Tasnim Z. AlzheimerNet: An Effective Deep Learning Based Proposition for Alzheimer’s Disease Stages Classification From Functional Brain Changes in Magnetic Resonance ImagesIEEE Access. 2023;11:16376–16395. Available from: https://doi.org/10.1109/ACCESS.2023.3244952

  29. Kim CM, Lee W. Classification of Alzheimer’s Disease Using Ensemble Convolutional Neural Network With LFA AlgorithmIEEE Access. 2023;11:143004–143015. Available from: https://doi.org/10.1109/ACCESS.2023.3342917

  30. Chabib CM, Hadjileontiadis LJ, Shehhi AA. DeepCurvMRI: Deep Convolutional Curvelet Transform-Based MRI Approach for Early Detection of Alzheimer’s DiseaseIEEE Access. 2023;11:44650–44659. Available from: https://doi.org/10.1109/ACCESS.2023.3272482

  31. Pusparani Y, Lin CY, Jan YK, Lin FY, Liau BY, Ardhianto P. Diagnosis of Alzheimer’s Disease Using Convolutional Neural Network With Select Slices by Landmark on Hippocampus in MRI ImagesIEEE Access. 2023;11:61688–61697. Available from: https://doi.org/10.1109/ACCESS.2023.3285115

  32. Mercaldo F, Giammarco MD, Cesarelli M, Ravelli F, Martinelli F, Santone A. TriAD: A Deep Ensemble Network for Alzheimer Classification and LocalizationIEEE Access. 2023;11:91969–91980. Available from: https://doi.org/10.1109/ACCESS.2023.3307702

  33. Prajapati R, Khatri U, Kwon GR. An Efficient Deep Neural Network Binary Classifier for Alzheimer’s Disease Classification. In: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). (pp. 231-234) IEEE. 2021.

  34. Murugan S, Venkatesan C, Sumithra MG, Gao XZ, Elakkiya B, Akila M, et al. DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia From MR ImagesIEEE Access. 2021;9:90319–90329. Available from: https://dx.doi.org/10.1109/access.2021.3090474

  35. Zhang J, Zheng B, Gao A, Feng X, Liang D, Long X. A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer's disease classificationMagnetic Resonance Imaging. 2021;78:119–126. Available from: https://dx.doi.org/10.1016/j.mri.2021.02.001

  36. Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer’s disease stageScientific Reports. 2021;11(1). Available from: https://dx.doi.org/10.1038/s41598-020-74399-w

  37. Turkson RE, Qu H, Mawuli CB, Eghan MJ. Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural NetworkNeural Processing Letters. 2021;53(4):2649–2663. Available from: https://dx.doi.org/10.1007/s11063-021-10514-w

  38. Sohail N, Anwar SM. A Modified U-Net Based Framework for Automated Segmentation of Hippocampus Region in Brain MRIIEEE Access . 2022;10:31201 –31209. Available from: https://doi.org/10.1109/ACCESS.2022.3159618

  39. Manjón JV, Romero JE, Coupe P. A novel deep learning based hippocampus subfield segmentation methodscientific reports . 2022;12:1–9. Available from: https://doi.org/10.1038/s41598-022-05287-8

  40. Deng H, Zhang Y, Li R, Hu C, Feng Z, Li H. Combining residual attention mechanisms and generative adversarial networks for hippocampus segmentationTsinghua Science and Technology. 2022;27(1):68–78. Available from: https://dx.doi.org/10.26599/tst.2020.9010056

  41. Böhle M, Eitel F, Weygandt M, Ritter K. Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease ClassificationFrontiers in Aging Neuroscience. 2019;11. Available from: https://dx.doi.org/10.3389/fnagi.2019.00194

  42. Faisal FUR, Kwon GR. Automated Detection of Alzheimer’s Disease and Mild Cognitive Impairment Using Whole Brain MRIIEEE Access. 2022;10:65055–65066. Available from: https://dx.doi.org/10.1109/access.2022.3180073

  43. Kim J, Jeong M, Stiles WR, Choi HS. Neuroimaging Modalities in Alzheimer’s Disease: Diagnosis and Clinical FeaturesInternational Journal of Molecular Sciences. 2022;23(11):1–22. Available from: https://doi.org/10.3390/ijms23116079

Cite this article

Bhosale SS, Dixit VV. (2024). Advancements in Deep Learning for Alzheimer’s Disease Diagnosis: A Comprehensive Review. International Journal of Electronics and Computer Applications. 1(2): 60-71. https://doi.org/10.54839/ijeaca.v1i2.7

Views
14
Downloads
9
Citations