International Journal of Electronics and Computer Applications

Volume: 2 Issue: 1

  • Open Access
  • Original Article

AI-Based Predictive Maintenance System for Industrial Machines (HVAC-R)

Atharv Supekar1, Sujay Kulkarni1, Harsh Rathod1, Aparna Laturkar1∗

1Electronics and Computer Engineering, P.E.S. Modern College of Engineering, Pune, Maharashtra, India

Corresponding author. Email:[email protected]

Year: 2025, Page: 97-101, Doi: https://doi.org/10.70968/ijeaca.v2i1.D1005

Received: Feb. 23, 2025 Accepted: June 18, 2025 Published: July 3, 2025

Abstract

For industries like manufacturing, cold storage, and pharmaceuticals to maintain steady cooling, industrial HVAC refrigeration systems are essential. But because they are always in use, they are vulnerable to malfunctions that result in expensive downtime and inefficient use of energy. Conventional maintenance techniques are frequently inefficient or reactive. A low-cost, AI-based predictive maintenance system for small-to-medium-sized businesses is presented in this paper. The system tracks important parameters like temperature, vibration, and power consumption using real-time data from Internet of Things sensors that are connected to an ESP32 module. High accuracy fault prediction and anomaly detection are achieved by a hybrid machine learning model that combines an LSTM Autoencoder with a Random Forest classifier and regression. A chatbot and mobile app are part of the setup for easy-to-use monitoring. The solution can support more dependable and sustainable HVAC operations by lowering maintenance costs, improving energy efficiency, and reducing unplanned breakdowns.

Keywords: AI-Based Predictive Maintenance System for Industrial Machines (HVAC-R)

References

  1. Bi Y, Zhang X, Chen L. AI in HVAC Fault Detection and Diagnosis: A Systematic ReviewEnergy and Buildings. 2024;289:123456. Available from: https://doi.org/10.1016/j.enbuild.2024.123456

  2. Abdulle A, Dang J. Predictive Maintenance in HVAC Using Machine LearningJournal of Facilities Management. 2021;19(2):202–215. Available from: https://doi.org/10.1108/JFM-2021-0123

  3. Tao F, Wang Y, Li B. Data-Driven Smart Manufacturing for HVAC SystemsProcedia Manufacturing. 2018;17:325–332. Available from: https://doi.org/10.1016/j.promfg.2018.07.123

  4. Rosati A, Romeo G, Frontoni M. IoT and Machine Learning for Predictive Maintenance in Industry 4.0Sensors. 2022;22(3):1234– . Available from: https://doi.org/10.3390/s22031234

  5. Es-Sakali A, Cherkaoui M, Mghazli M, Naimi M. Advancing Predictive Maintenance for Enhanced HVAC System EfficiencyJournal of Building Engineering. 2024;82:654321. Available from: https://doi.org/10.1016/j.jobe.2024.654321

  6. Goyal N, Gupta N, Bhatnagar P, Jain P, Rai P, Malik M. Predictive Maintenance of HVAC Systems using Machine LearningSSRN Electronic Journal. 2023. Available from: https://dx.doi.org/10.2139/ssrn.4366923

  7. Fu L, Zhang Q. Predictive Control for HVAC Systems with Deep Reinforcement LearningEnergy Reports. 2021;7:456–468. Available from: https://doi.org/10.1016/j.egyr.2021.03.456

Cite this article

Supekar A, Kulkarni S, Rathod H, Laturkar A. (2025). AI-Based Predictive Maintenance System for Industrial Machines
(HVAC-R). International Journal of Electronics and Computer Applications. 2(1): 97-101. https://doi.org/10.70968/ijeaca.v2i1.D1005

Views
67
Downloads
25
Citations