International Journal of Electronics and Computer Applications

Volume: 1 Issue: 1

  • Open Access
  • Original Article

Pest Classification using Morphological Processing in Deep Learning

Sanjyot Thuse1,2,* , Meena Chavan1

1 Department of Electronics and Communication Engineering, Bharati Vidyapeeth (Deemed To Be University) College of Engineering, Pune, India
2 Department of Electronics and Telecommunication, Progressive Education Society’s Modern College of Engineering, Pune, India

*Corresponding author email: [email protected]
 

Year: 2024, Page: 20-25, Doi: https://doi.org/10.54839/ijeaca.v1i1.thuse

Received: Feb. 15, 2024 Accepted: May 18, 2024 Published: May 22, 2024

Abstract

Agriculture relies heavily on the prompt detection of pests. There are numerous technologies for identifying pests, but almost all of them are susceptible to misclassification due to inadequate lighting, background distractions, a diversity of collection techniques. Thus, pests that are only partially visible or oriented differently. This misclassification could result in a significant yield loss. We presented an architecture that would use skeletonization together with neural networks as classifiers to give excellent classification accuracy under the aforementioned parameters in order to alleviate this problem. The paper compares the performance of CNN. CNN with VGG16 and the proposed system on accuracy metric. The results obtained are on disoriented images. From the findings it is observed that for data augmented dataset CNN gives 80% accuracy, CNN with VGG16 gives 95% accuracy, and CNN with feature extractor, skeletonization achieved good accuracy which is up to 98%. A web app and an android app is also developed to classify the pest which will help the farmers to identify the name of the pest without going into technical details. This framework will surely help farmers in identifying pest names instantly which will later help in identifying the name and quantity of pesticide.

Keywords: Pest Classification using Morphological Processing in Deep Learning

References

  1. Thenmozhi K, Reddy US. Crop pest classification based on deep convolutional neural network and transfer learningComputers and Electronics in Agriculture. 2019;164:104906. Available from: https://doi.org/10.1016/j.compag.2019.104906

  2. Hu Z, Xu L, Cao L, Liu S, Luo Z, Wang J, et al. Application of Non-Orthogonal Multiple Access in Wireless Sensor Networks for Smart AgricultureIEEE Access. 2019;7:87582–87592. Available from: https://doi.org/10.1109/ACCESS.2019.2924917

  3. Ayaz M, Ammad-Uddin M, Sharif Z, Mansour A, Aggoune EHMM. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields TalkIEEE Access. 2019;7:129551–129583. Available from: https://doi.org/10.1109/ACCESS.2019.2932609

  4. Farooq MS, Riaz S, Abid A, Abid K, Naeem MA. A Survey on the Role of IoT in Agriculture for the Implementation of Smart FarmingIEEE Access. 2019;7:156237–156271. Available from: https://doi.org/10.1109/ACCESS.2019.2949703

  5. Karar ME, Rasheed M, Al-Rasheed A, Reyad O. IoT and Neural Network-Based Water Pumping Control System For Smart IrrigationInform. Sci. Lett. 2020;9:107–112. Available from: https://doi.org/10.48550/arXiv.2005.04158

  6. Nanni L, Maguolo G, Pancino F. Insect pest image detection and recognition based on bio-inspired methodsEcological Informatics. 2020;57:101089. Available from: https://doi.org/10.1016/j.ecoinf.2020.101089

  7. Alves AN, Souza WSR, Borges DL. Cotton pests classification in field-based images using deep residual networksComputers and Electronics in Agriculture. 2020;174:105488. Available from: https://doi.org/10.1016/j.compag.2020.105488

  8. Cheng X, Zhang Y, Chen Y, Wu Y, Yue Y. Pest identification via deep residual learning in complex backgroundComputers and Electronics in Agriculture. 2017;141:351–356. Available from: https://doi.org/10.1016/j.compag.2017.08.005

  9. Mishra M, Singh PK, Brahmachari A, Debnath NC, Choudhury P. A robust pest identification system using morphological analysis in neural networksPeriodicals of Engineering and Natural Sciences (PEN). 2019;7(1):483. Available from: http://pen.ius.edu.ba/index.php/pen/article/view/377/292

  10. Xia D, Chen P, Wang B, Zhang J, Xie C. Insect Detection and Classification Based on an Improved Convolutional Neural NetworkSensors. 2018;18(12):4169. Available from: https://doi.org/10.3390/s18124169

  11. Thenmozhi K, Srinivasulu Reddy U. Crop pest classification based on deep convolutional neural network and transfer learningComputers and Electronics in Agriculture. 2019;164:104906.

  12. Rustia DJA, Chao JJJ, Chung JYY, Lin TT. An Online Unsupervised Deep Learning Approach for an Automated Pest Insect Monitoring System </i>2019 Boston, Massachusetts July 7- July 10, 2019. 2019. Available from: https://doi.org/10.13031/AIM.201900477

  13. Tetila EC, Machado BB, Astolfi G, Belete NADS, Amorim WP, Roel AR, et al. Detection and classification of soybean pests using deep learning with UAV imagesComputers and Electronics in Agriculture. 2020;179:105836. Available from: https://doi.org/10.1016/j.compag.2020.105836

  14. Coulibaly S, Kamsu-Foguem B, Kamissoko D, Traore D. Explainable deep convolutional neural networks for insect pest recognitionJournal of Cleaner Production. 2022;371:133638. Available from: https://doi.org/10.1016/j.jclepro.2022.133638

  15. Ramalingam B, Mohan RE, Pookkuttath S, Gómez BF, Borusu CSCS, Teng TW, et al. Remote Insects Trap Monitoring System Using Deep Learning Framework and IoTSensors. 2020;20(18):5280. Available from: https://doi.org/10.3390/s20185280

  16. Xia D, Chen P, Wang B, Zhang J, Xie C. Insect Detection and Classification Based on an Improved Convolutional Neural NetworkSensors. 2018;18(12):4169.

  17. Watve S, Patil M, Shinde A. International Conference on Emerging Smart Computing and Informatics. 2023.

  18. Tetila EC, Machado BB, Astolfi G, Belete NADS, Amorim WP, Roel AR, et al. Detection and classification of soybean pests using deep learning with UAV imagesComputers and Electronics in Agriculture. 2020;179:105836. Available from: https://doi.org/10.1016/j.compag.2020.105836

  19. Mishra M, Singh PK, Brahmachari A, Debnath NC, Choudhury P. A robust pest identification system using morphological analysis in neural networksPeriodicals of Engineering and Natural Sciences (PEN). 2019;7(1):483.

Cite this article

Thuse S, Chavan M. (2024). Pest Classification using Morphological Processing in Deep Learning. International Journal of Electronics and Computer Applications. 1(1): 20-25. https://doi.org/10.54839/ijeaca.v1i1.thuse

Views
462
Downloads
150
Citations